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ABSTRACT: A clear understanding of the mechanisms that control the
electron dynamics in a strong laser field is still a challenge that requires
interpretation by advanced theory. Development of accurate theoretical and
computational methods, able to provide a precise treatment of the
fundamental processes generated in the strong field regime, is therefore
crucial. A central aspect is the choice of the basis for the wave function
expansion. Accuracy in describing multiphoton processes is strictly related
to the intrinsic properties of the basis, such as numerical convergence,
computational cost, and representation of the continuum. By explicitly
solving the 1D and 3D time-dependent Schrödinger equation for H2

+ in the
presence of an intense electric field, we explore the numerical performance
of using a real-space grid, a B-spline basis, and a Gaussian basis (improved
by optimal Gaussian functions for the continuum). We analyze the
performance of the three bases for high-harmonic generation and above-threshold ionization for H2

+. In particular, for high-
harmonic generation, the capability of the basis to reproduce the two-center interference and the hyper-Raman phenomena is
investigated.

1. INTRODUCTION

The optical response of a molecular system to an intense and
ultrashort laser pulse is a subject of increasing interest since the
advent of the attosecond laser pulses.1 Recent advances in laser
technology are continuously triggering the introduction of new
time-resolved spectroscopies, offering the opportunity to
investigate electron dynamics in molecules with unprecedented
time resolution.2 For example, electronic charge migrations
have been traced in molecules using attosecond pulses,3

electron correlation effects have been also observed in
photoemission processes on the attosecond scale,4,5 and
above-threshold ionization (ATI) together with high-harmonic
generation (HHG) spectra have been used to explain the
attosecond dynamics of electronic wave packets in mole-
cules.6,7

Despite these exciting experimental achievements, reaching a
clear understanding of the mechanisms that control the
electron dynamics under the action of a strong laser field is
still a challenge that requires theoretical support.6 It is crucial
to develop accurate theoretical and computational methods
capable to provide precise treatments of the fundamental
processes generated by a strong laser field.8−11

Nowadays, the electron dynamics problem in strong fields is
tackled by two main families of methods: time-dependent

density-functional theory (TDDFT) and time-dependent wave
function methods.6,12−16 With these methods, developments
have been focused on the accurate description of electron
correlation. However, because of the complexity of nonlinear
optical phenomena, such as HHG and ATI, another important
aspect needs to be carefully addressed: the choice of the one-
electron basis for representing the time-dependent wave
function. In fact, a reliable description of the electron dynamics
in strong laser fields depends on the accuracy in reproducing
the bound states and, even more important, the continuum
states of the molecular system considered. In addition,
choosing a good basis can improve the numerical convergence
of the results and reduce the computational cost of simulations.
Most of the proposed numerical methods in literature

directly describe the system wave function on a real-space
grid17−20 or through a numerically defined grid-based basis set
of functions, as in the case of the discrete-variable
representation method,21 the pseudospectral grid method, or
the finite-element method.22 Within these approaches,
schemes have been proposed to compute ATI spectra in
molecules23 and to study the different molecular orbital

Received: June 29, 2018
Published: September 24, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 5846−5858

© 2018 American Chemical Society 5846 DOI: 10.1021/acs.jctc.8b00656
J. Chem. Theory Comput. 2018, 14, 5846−5858

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00656
http://dx.doi.org/10.1021/acs.jctc.8b00656
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


contributions to HHG spectra.24,25 Grid-based basis sets have
demonstrated to be very accurate to describe nonlinear optical
phenomena. However, the computational cost can be very high
and strategies involving multilevel parallelization schemes have
had to be developed.26

Another recurrent basis, in the context of ultrafast electron
dynamics, is composed by B-splines, defined as piecewise
polynomial functions with compact support.27 They were first
introduced in atomic calculations by Shore28 and later
extensively used to treat ionized and excited states.29,30 B-
splines have proved to be a very powerful tool to describe
multiphoton ionization processes in atoms and molecules in
the frameworks of TDDFT and wave function methods.31−34

The success of B-splines is due to a remarkable feature: B-
splines are able to reproduce accurately both bound and
continuum states. This numerical property is directly related to
their effective completeness.35 Nowadays atomic packages
based on B-splines are available36−38 and recent studies show
their ability to reproduce HHG and ATI spectra of molecules
under the action of a strong laser field.39 However, new
algorithms have to be developed in order to increase the
computational efficiency of complex calculations with B-
splines.
More recently, Gaussian-type orbital functions (abbreviated

as Gaussian functions in the following), in the framework of
the time-dependent configuration-interaction (TDCI) method,
have been used to calculate HHG spectra in atoms and
molecules.12,40−43 The importance of the cardinal number
(related to the maximal angular momentum) of the basis set
and the number of diffuse basis functions was investigated.12,40

Two strategies to improve continuum states have been studied:
multicentered basis functions12,41 and, alternatively, Gaussian
functions with exponents specially optimized to improve the
continuum.42,44 This latter strategy proved to be more efficient
than using multicentered basis functions and it has also lower
computational cost, however it remains to be tested on
molecular systems. These works permitted us to identify the
best basis sets to be used in order to capture the features of
HHG spectra.
Finally, to overcome some of the limitations of the grid, B-

spline, and Gaussian basis, hybrid approaches have been
proposed in the last years. For example, Gaussian functions
were used together with grid-based functions to reproduce
electron dynamics in molecular systems,45 and also Gaussian
functions have been combined with B-splines for studying
ionization in H and He atoms.46,47

The aim of the present work is to compare the performance
of the three families of basis, briefly reviewed above, i.e., grid,
B-splines, and Gaussians, for the calculation of HHG and ATI
spectra of the molecular ion H2

+. This system has been chosen
because it has the advantage of having only one electron, which
allows us not to bias our investigation with possible effects due
to electron correlation. Indeed, with this simple case, we can
focus on the effectiveness of the representation of the
continuum states for the electron dynamics and the computa-
tional advantages of each basis. Moreover, the presence of two
nuclei in H2

+ offers the opportunity to observe intricate
physical features, such as quantum interferences in the HHG
process.48−50

This article is organized as follows. In Section 2 we present
the 1D theoretical model to solve the electronic time-
dependent Schrödinger equation (TDSE) with grid, B-spline,
and Gaussian bases. In Section 3 we present and discuss the

results for the 1D approach. In Section 4 we present the 3D
theoretical model to solve the electronic TDSE with grid and
Gaussian basis. In Section 5 we present and discuss the results
for the 3D approach. We compare the bound and the
continuum energy spectra of H2

+, as well as HHG and ATI
spectra for grid, B-spline, and Gaussian bases, emphasizing the
advantages and disadvantages of each representation. In
particular, for HHG spectra, we investigate the capability of
the different basis to reproduce specific quantum features, such
as the hyper-Raman51 and the two-center interference
phenomena.48−50 Finally, Section 6 contains our conclusions.

2. 1D THEORETICAL MODEL OF H2
+

The electronic TDSE for a 1D model of H2
+ is given by, in

atomic units (au),

ψ ψ∂
∂

= [ ̂ + ̂ ]i
t
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where ψ(x, t) is the time-dependent electron wave function.
Here, Ĥ0(x) is the field-free Hamiltonian,
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where R is the interatomic distance and α is a parameter
chosen to reproduce the exact ionization energy Ip (taken as
−1.11 Ha for all the three bases employed here) of the real H2

+

molecule at a given value of R (α = 1.44 at R = 2.0 au).50

The interaction between the electron and the laser electric
field E(t) is taken into account by the time-dependent
interaction potential, which is given in the length gauge by

̂ = ̂H x t xE t( , ) ( )int (4)

where E(t) is the laser electric field and x̂ is the electron
position operator. The laser electric field is chosen as E(t) =
E0 f(t) sin(ω0t) where E0 is the maximum amplitude of the
pulse, ω0 is the carrier frequency, and f(t) is a trapezoidal
envelope
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with T0 = 2π/ω0. The duration of the pulse is thus τ = 10T0
(i.e., 10 optical cycles).

2.1. HHG and ATI Spectra. A HHG spectrum,
experimentally accessible by measuring the emission spectrum
in the presence of an intense laser field, can be calculated as the
acceleration power spectrum over the duration of the laser
pulse τ50

∫ω ψ ψ= ⟨ | − ∇ ̂ − | ⟩
τ

ω−P t V E t t W t t( ) ( ) ( ) ( ) ( )e di t
a

0

2

(6)

where −∇V̂ − E(t) is the electron acceleration operator, as
defined by the Ehrenfest theorem, and W(t) is an apodization
function that we chose to be of the sin-square window form.
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An alternative way to obtain the HHG spectrum is to calculate
the dipole power spectrum as

∫ω ψ ψ= ⟨ | |̂ ⟩
τ

ω−P t x t W t t( ) ( ) ( ) ( )e dx
i t

0

2

(7)

It can be shown that the two forms are related,12,52−54

ω4Px(ω) ≈ Pa(ω), under reasonable conditions (see Appendix
in ref 12). The function W(t) is a sin-square window function
chosen empirically to minimize the noise and especially to
remove the artifacts arising from the discrete Fourier transform
due to the fact that we integrate only over a limited time
duration and not from −∞ to +∞.
An ATI spectrum, which is experimentally accessible by

measuring the photoelectron spectrum of the molecule, can be
calculated by spectrally analyzing the system wave function
ψ(τ) at the time τ corresponding to the end of the laser pulse.
Specifically, using the window operator method, one calculates
the probability P(E, n, γ) to find the electron in the energy
interval [E − γ, E + γ] as55,56

γ ψ τ γ
γ

ψ τ=
̂ − +

P E n
H E

( , , ) ( )
( )

( )
2

0
2 2

n

n n

(8)

where γ and n are parameters chosen to allow flexibility in the
resolution and accuracy of the energy analysis. In our case we
chose n = 2 and γ = 2 × 10−3 au.
2.2. Representation of the Time-Dependent Wave

Function and Propagation. 2.2.1. Real-Space Grid. The
time-dependent wave function is discretized on a real-space
grid of N points xi separated by a constant step Δx = xi+1 − xi,
in the interval [x1 = −(N − 1)Δx/2, xN = (N − 1)Δx/2]. It is
thus represented by the vector

ψ ψ ψ ψ≡x t x t x t x t( , ) ( ( , ), ..., ( , ), ..., ( , ))i N1 (9)

where xi = (i − 1 − (N − 1)/2)Δx.
The Laplacian operator is computed with the second-order

central difference formula which gives rise to a tridiagonal
matrix representation of the Hamiltonian Ĥ0.

17 The TDSE (eq
1) is solved by means of the Crank−Nicholson propagation
algorithm.57 The H2

+ ground state, computed by inverse
iteration,58 is taken as the initial state for the propagation. In
addition, to avoid unphysical reflections at the boundaries of
the simulation grid, a mask-type absorber function17 was
implemented with a spatial extension of 50 au.
For ATI spectra, converged results were obtained with N =

200001 and Δx = 0.02 au, and with a time step Δt = 8.41 ×
10−4 au. For HHG spectra, we obtained converged results with
N = 160001, Δx = 0.01 au, and Δt = 1.35 × 10−2 au.
2.2.2. B-Spline Basis Set. The time-dependent wave

function with the B-spline basis set is represented as

∑ψ =
=

x t c t B x( , ) ( ) ( )
i

M

i i
k

1 (10)

where ci(t) are time-dependent coefficients and {Bi
k(x)} are a

set of B-spline functions of order k and dimension M. To
completely define B-spline functions a sequence of knots must
be given. Each function Bi

k(x) is defined on a supporting
interval [ti, ti+k] which contains k + 1 consecutive knots, and
the function Bi

k(x) vanishes outside this interval. We have
chosen the first and the last knots to be k-fold degenerate, t1 =
t2 = ··· = tk = Rmin and tM+1 = tM+2 = ··· = tM+k = Rmax, while the

multiplicity of the other knots is unity. The width of an interval
is ti+1 − ti = Rmax/(M − k + 1).32 In our calculations we used k
= 8, M = 15008, Rmin = 0, and Rmax = 8000 au. The system was
placed at the center of the box at x = 4000 au.
ATI and HHG spectra were obtained by solving the TDSE

(eq 1) within the Cranck−Nicholson propagation algorithm57

using a time step of Δt = 1.35 × 10−2 au. The H2
+ ground state

was computed by inverse iteration58 and taken as the initial
state for the propagation. We did not need to use any absorber
during the propagation because of the very large size of the
simulation box.

2.2.3. Gaussian Basis Set. For the Gaussian basis set we
followed the TDCI procedure developed in our previous
work12 and adapted it to the present 1D H2

+ model. The time-
dependent wave function is represented here as

∑ψ ϕ=
≥

x t c t x( , ) ( ) ( )
k

k k
0 (11)

where ϕk(x) are the eigenstates of the field-free Hamiltonian
Ĥ0, composed by the ground state (k = 0) and all the excited
states (k > 0). The ϕk(x) are expanded on the Gaussian basis
set. We use uncontracted Gaussians localized on each nucleus
and two “angular momenta” ( ), corresponding to odd and
even functions. The basis functions are thus of the form

±x R( /2) e−α(x±R/2)
2

, where = 0 or 1. The Gaussian
exponents α are of two different types. The first type of
exponents are optimized to describe the bound part of the
wave function. We used the uncontracted STO-3G basis set,
i.e., three uncontracted Gaussians whose exponents are taken
from the STO-3G basis set with Slater exponent ζ = 1. We take
the same exponents for = 0 and = 1. The second type of
exponents are optimized for the representation of the
continuum.12 They are computed with the procedure
developed by Kaufmann59 adapted to the 1D model, i.e., by
optimizing the overlap between a 1D Slater type function
Nn

(S)(ζ)xne−ζ|x| with ζ = 1 and a Gaussian function

α α−N x( ) eG
n

x( )
,

n,
2
, where Nn

(S) and N G( ) are normalization
factors. Note that, in this case, the exponents used for the = 0
shell and for the = 1 shell are different. In the following, we
will denote these Gaussian functions optimized for the
continuum as K functions. To sum up, we use three functions
with STO-3G exponents and four K functions for each angular
momentum, localized on each nucleus, which makes a total of
(3 + 4) × 4 = 28 uncontracted Gaussian basis functions.
However, when we orthonormalize this basis set, we find linear
dependencies that needs to be removed. For this we define a
cutoff ε = 10−8 under which the eigenvalues of the overlap
matrix are considered to be zero, and their corresponding
eigenvectors are removed from the space. We get an
orthonormalized basis set of 24 basis functions. The basis-set
exponents are collected in Table S1 of Supporting Information.
To solve the TDSE (eq 1) we used the split-operator
propagator with Δt = 1.35 × 10−2 au.
In order to compensate for the unphysical absence of

ionization, we used the double-d heuristic lifetime model
proposed in ref 12. This model requires two parameters, d0 and
d1, which represent different electron escape lengths after
ionization. We have chosen these parameters on the basis of
the rescattering model60,61 where an electron is ionized by a
strong laser field, accelerated in the continuum, and then
brought back close to its parent ion where it can recombine or
scatter. From this model, d0 is equal to the maximum electron

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00656
J. Chem. Theory Comput. 2018, 14, 5846−5858

5848

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00656/suppl_file/ct8b00656_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00656/suppl_file/ct8b00656_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.8b00656


excursion after ionization which is ω=x E2 /max 0 0
4 , while d1

< d0. In our calculations we always used d1 = 20 au. Moreover
d0 affects all the continuum states below the cutoff energy
Ecutoff = Ip + 3.17Up

60,61 (Up = E0
2/(4ω0

2) is the ponder-
omotive energy of the electron) while d1 handles the ionization
for those continuum energy states above Ecutoff. This allows
better retention of the contribution of continuum states for the
recombination step of the HHG process. Table 1 collects the
values of d0 used in this work.

There is a fundamental difference between this approach
and the grid and B-spline ones. Indeed, the TDSE with the
Gaussian basis set is solved in the energy space. This fact
permits having a more direct and intuitive interpretation of the
role of bound and continuum states in HHG and ATI
spectroscopies. In addition, the use of Gaussians reduces
considerably the computational time required in time
propagation. This makes it a more promising tool for the
modelization of larger molecules.

3. 1D RESULTS AND DISCUSSION
3.1. Spectrum of the Field-Free Hamiltonian. The

spectrum of Ĥ0 should be strictly independent of the choice of
the basis set in the limit of a complete basis set. However,
because our basis sets are not complete, differences in the
eigenstates and eigenvalues from grid, B-spline, and Gaussian
basis sets can arise, especially at high-energy values. In order to
investigate the behavior of the three basis sets, the spectrum of
Ĥ0 is analyzed in this section.
In Figure 1 the ground-state wave function is shown. The

three basis sets reproduce exactly alike the ground state of the
1D H2

+ model, at the equilibrium internuclear distance of R =
2.0 au. The panel (a) of Figure 2 shows the eigenvalues given
by each basis set up to the 30th energy state, and in panel (b)
of Figure 2 one finds the inverse of the density of continuum
states which is defined as ρ(Ej) = 1/(Ej+1 − Ej) where Ej is a
positive eigenvalue. In order to compare the three bases, the
density of the states has been normalized to the length of the
simulation box in the case of the grid and B-splines and to a
constant in the case of the Gaussians. This constant was
chosen to force the first Gaussian continuum eigenvalue to
match the first continuum eigenvalue of the grid and B-splines,
which are identical. For all the three basis sets, the continuum
part of the spectrum is represented as a finite number of
eigenstates as, in numerical calculations, the basis set is always
incomplete. However, the discreteness of the Gaussians is
much larger than that of the grid and B-splines. The spectrum
obtained with the Gaussians starts to diverge from the grid and
B-spline ones already at around the 13th state. This issue is a

direct consequence of the relatively small size of the Gaussian
basis set compared to the number of grid points or B-spline
functions used. Indeed, the STO-3G+4K basis contains only
24 Gaussian basis functions whereas we used 400001 grid
points and 15000 B-splines. In principle, we could increase the
number of Gaussians, but this will quickly lead to the linear
dependency problem. This problem prevents us from using
more than a few tens of optimized Gaussian functions. This
fact, as we will see in the following sections, can have

Table 1. d0 Values, Taken as xmax, Used in the Double-d
Heuristic Lifetime Model for the Laser Intensities
Employed in This Work

I (W/cm2) d0 (au)

5 × 1013 23
1014 33
2 × 1014 46
3 × 1014 57
4 × 1014 66
5 × 1014 74
7 × 1014 87

Figure 1. Ground-state wave function of H2
+ (at the equilibrium

internuclear distance of R = 2.0 au) calculated using grid, B-spline,
and Gaussian basis.

Figure 2. (a) Eigenvalues of H2
+ up to the 30th eigenstate. (b)

Inverse of the normalized density of continuum states.
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important consequences on the calculation of HHG and, in
particular, of ATI spectra.
To investigate the accuracy of the grid, B-spline, and

Gaussian bases in the description of continuum wave
functions, we have chosen two different continuum energies,
both representative of two different continuum energy regions:
low energy (E = 0.06 Ha) and high energy (E = 1.97 Ha). For
each of these energies, we reported in (Figure 3) the

corresponding wave functions φE(x). For the grid, the
continuum wave functions were obtained by propagating the
TDSE at the chosen positive energy E with a fourth-order
Runge−Kutta algorithm,58 and then normalized with the
Strömgren procedure.62,63 Instead, for B-splines and Gaussians,
the wave functions were obtained from a direct diagonalization
of Ĥ0. In this case, the resulting continuum states were
renormalized using the procedure proposed by Maciás et
al.64,65 We verified that the Strömgren and Maciás procedures
are equivalent.66 The continuum wave functions computed
with both grid and B-spline basis sets reproduce the same
oscillations in the low- and high-energy regions of the
continuum. On the other hand, Gaussians can reproduce just
a few of the oscillations. We already observed this behavior in
the case of the hydrogen atom in a 3D calculation42 where the
crucial role of the K functions was pointed out in order to
obtain these oscillations (in that case a much larger basis set
was employed). Here, we want to draw the attention to the fact
that Gaussians can still be reasonable in the low-energy

continuum but become unsuitable to reproduce oscillations for
high-energy continuum states. The probability of propagating
an electron in one of the two regions depends on the laser
parameters used in the simulation. This fact can have
important implications in the description of HHG and ATI
spectra as we will see in the following sections.

3.2. HHG. HHG spectra have been calculated in the dipole
and the acceleration forms for H2

+ at different internuclear
distances, R = 1.8, R = 2.0 (equilibrium distance), and R = 2.2
au, for a Ti:sapphire laser pulse with a carrier frequency ω0 =
0.057 Ha (1.55 eV, 800 nm) and different intensities, I = 5 ×
1013, I = 1 × 1014, I = 2 × 1014, I = 5 × 1014, and I = 7 × 1014

W/cm2.
In Figure 4 we show the dipole form of the HHG spectra at

R = 2.0 au for three different laser intensities. All three basis
sets reproduce the general expected features of an HHG
spectrum: the intensity of the low-order harmonics decreases
rapidly, then a plateau region follows where the intensity
remains nearly constant, and at high frequencies the harmonic
intensity decreases again. As H2

+ has a center-of-inversion
symmetry, only odd harmonics are presented in the spectrum.
We estimated the cutoff energies by calculating Ecutoff = Ip +
3.17Up, as given in the semiclassical rescattering model.60,61

We observe that the grid and B-spline HHG spectra are
indistinguishable for all the laser intensities. This fact is
consistent with the analysis reported above on the spectrum of
Ĥ0 (see Section 3.1). On the other hand, the agreement
between the spectra obtained with the Gaussian basis and
those obtained with the grid or B-splines deteriorates when the
laser intensity increases. This is clearly observed for the plateau
region for the intensity I = 5 × 1014 W/cm2 but also detected
for the plateau and cutoff regions for the intensity I = 7 × 1014

W/cm2 (see Supporting Information). Most of these
observations are also valid when using the acceleration form
of the HHG spectrum. The only exception we found was with
the Gaussian basis set and laser intensities I = 5 × 1014 W/cm2,
as shown in Figure 5, and I = 7 × 1014 W/cm2 (see Supporting
Information). For these largest intensities, the spectrum
extracted from the acceleration seems to largely underestimate
the position of the cutoff but to much better reproduce the
harmonics of the plateau.
To analyze in more detail the fine structure of the HHG

peaks, in Figure 6 we show HHG spectra only up to the 15th
harmonics. The B-spline and the grid spectra are almost
identical except for some very small differences when the laser
intensity is very high. Gaussian spectra reproduce the features
of the B-spline and grid ones, but when the laser intensity
increases the Gaussian spectrum becomes much more noisy.
From panel (a) of Figure 6 it is also possible to identify

another series of peaks besides those corresponding to the
harmonics. These peaks correspond to hyper-Raman lines with
position given by ω̃ ± 2kω0,

67 where k is an integer and ω̃ =
6.69ω0 is the resonance with the first excited state. We observe
that the three basis sets describe with the same accuracy the
hyper-Raman lines. Moreover, at sufficiently large laser
intensity, the HHG process dominates, and the hyper-Raman
lines are not observed anymore (panel (b) of Figure 6).
The accuracy of the grid, B-spline, and Gaussian calculations

was also investigated through their ability to reproduce the
two-center interference in the HHG spectrum. This interfer-
ence was predicted by Lein et al.50 for diatomic molecules such
as H2

+. In this model, the electron that recombines with the
ionic core can interact with either of the two nuclei. The two

Figure 3. (a) Spatial dependence of the even wave function φE(x)
corresponding to E = 0.06 Ha. (b) Spatial dependence of the odd
wave function φE(x) corresponding to E = 1.97 Ha.
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atomic centers can therefore be interpreted as coherent point
sources, and the whole system can be seen as a microscopic
analogue of Young’s two-slit experiment. The light emitted by
each nucleus will interfere either constructively or destructively
depending on its frequency, and the interference pattern will
superimpose to the HHG spectrum. Since Lein’s model has
been proposed, a great number of numerical analyses came

Figure 4. HHG spectra calculated from the electron dipole at the
equilibrium internuclear distance R = 2.0 au with laser intensities (a) I
= 1014 W/cm2, (b) I = 2 × 1014 W/cm2, and (c) I = 5 × 1014 W/cm2.
Intensities I = 5 × 1013 and 7 × 1014 W/cm2 are reported in the
Supporting Information. For each HHG spectrum, the dot-dashed
lines indicate the cutoff energies, which are given by the rescattering
model as Ecutoff = Ip + 3.17Up; see refs 60 and 61. (a) Ecutoff = 31.7ω0,
(b) Ecutoff = 43.9ω0, and (c) Ecutoff = 80.5ω0. The arrow points to the
expected position of the two-center interference minimum extracted
from the recombination dipole.

Figure 5. HHG spectra calculated from the electron dipole and the
electron acceleration at the equilibrium internuclear distance of R =
2.0 au with a laser intensity of I = 5 × 1014 W/cm2 using Gaussian
basis sets. The dot-dashed line is the cutoff energy Ecutoff = 80.5ω0 and
the arrow points to the expected position of the two-center
interference minimum, extracted from the recombination dipole
which is identical to the one extracted from the recombination
acceleration.

Figure 6. HHG spectra calculated from the electron dipole at the
equilibrium internuclear distance R = 2.0 au up to the 15th harmonic
with laser intensities (a) I = 1014 W/cm2 and (b) I = 5 × 1014 W/cm2.
The dashed lines indicate the position of the harmonics while the
dotted lines indicate the hyper-Raman lines at position ω̃ ± 2kω0
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where k is an integer and ω̃ = 6.69ω0 is the resonance with the first
excited state.
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forth pointing out the role of the internuclear distance,
molecular orientation, recombination to excited states, and
laser intensity.11,48,68−75

According to Lein’s model, the position of the minimum in
the spectrum is independent from the laser intensity and can
be extracted from the analysis of the recombination dipole
drec(E) = ⟨φ0|x̂|φE⟩ where φ0 is the ground state and φE is a
continuum state at energy E of Ĥ0. This quantity is plotted in
panel (a) of Figure 7 for R = 1.8 au and in panel (a) of Figure 8

for R = 2.2 au. For R = 2.0 au, we report the recombination
dipole in the Supporting Information. The minimum described
in the two-center interference corresponds to the energy which
makes the recombination dipole vanish. We found that the
corresponding frequency is ω = 34.0ω0 for R = 1.8 au, ω =
26.4ω0 for R = 2.0 au, and ω = 20.8ω0 for R = 2.2 au. We note
that the extraction of the minimum from the recombination
dipole is straightforward for the grid and B-spline basis sets,
while in the case of the Gaussian basis only a rough estimate
can be given. Lein’s model predicts the position of the
minimum at ω = π2/(2R2ω0) which gives ω = 26.7ω0 for R =
1.8 au, ω = 21.6ω0 for R = 2.0 au, and ω = 17.9ω0 for R = 2.2
au. The underestimation of the minimum position by Lein’s
model has already been pointed out.70 The main reasons must
be searched in the different description of the ground state and
the continuum between our 1D theoretical model and Lein’s
model.

We report in panel (b) of Figure 7 and in panel (b) of
Figure 8 the HHG spectra for R = 1.8 au and for R = 2.2 au
with I = 2 × 1014 W/cm2, and we observe that all the basis sets
reproduce the position of the minimum of the two-center
interference. Also the minimum for R = 2.0 au is very well
reproduced as can be seen in Figure 4. Another observation is
that the sharpness of the minimum depends on the laser
intensity and on the internuclear distance. We confirm the fact
that the minimum is more visible for smaller internuclear
distances.76 We did the same investigation considering the
recombination acceleration arec(E) = ⟨φ0|−∇V̂|φE⟩ and the
HHG spectrum from the acceleration. We obtained the same
results (see Supporting Information) explained before. From
these studies we deduce that all the basis sets are capable of
accurately reproducing the two-center interference.50 However,
in the case of the Gaussian basis, the acceleration seems to
better reproduce the minimum for I = 5 × 1014 W/cm2 (panel
(c) of Figure 5) and I = 7 × 1014 W/cm2 (see Supporting
Information).
From the detailed analysis of HHG spectra presented in this

section, we conclude that for a good performance of the
Gaussian basis the laser intensity cannot be “very large”. For
example, for intensity lower than I = 5 × 1014 W/cm2 we
obtain correct HHG spectra while for higher intensities only
the harmonic peaks in the low-energy part of the plateau are
correct. A strategy to improve the Gaussian basis set could be

Figure 7. Two-center interference at R = 1.8 au: (a) recombination
dipole and (b) HHG spectrum at I = 2 × 1014 W/cm2. The arrow
points to the expected position of the two-center interference
minimum extracted from the recombination dipole. The dot-dashed
line is the cutoff energy Ecutoff = 43.8ω0. E0 is the ground-state energy.

Figure 8. Two-center interference at R = 2.2 au: (a) recombination
dipole and (b) HHG spectrum at I = 2 × 1014 W/cm2. The arrow
points to the expected position of the two-center interference
minimum extracted from the recombination dipole. The dot-dashed
line is the cutoff energy Ecutoff = 43.8ω0. E0 is the ground-state energy.
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to modify the cutoff ε below which the eigenvalues of the
overlap matrix are set to zero. This will change the number of
kept eigenvectors. In Figure 9 we compare an HHG spectrum

for I = 5 × 1013 W/cm2 calculated with the grid and with the
Gaussian basis while changing the linear-dependency threshold
ε: ε = 10−4 (17 basis functions), ε = 10−8 (24 basis functions,
which is the standard choice throughout the article), and ε =
10−10 (26 basis functions). This analysis shows that for a “low”
intensity (I = 5 × 1013 W/cm2) the quality of the HHG
spectrum in the plateau and cutoff regions is not affected by
the specific choice of the threshold of eigenvalues.
3.3. ATI. We calculated ATI spectra with intensities I = 5 ×

1013, 1 × 1014, and 5 × 1014 W/cm2. In panel (a) of Figure 10
we show the ATI spectrum with laser intensity I = 1014 W/
cm2, while the spectra for intensities I = 5 × 1013 and 5 × 1014

W/cm2 are reported in the Supporting Information.
The ATI spectrum of Figure 10 has positive energy peaks

(bound-continuum transitions) corresponding to the electron
density ionized during the propagation, i.e., the photoelectron
spectrum, while the peaks in the negative region (bound−
bound transitions) represent the electron density remaining in
the ground state and that has been transferred to excited states.
We remember that only the positive energy region of an ATI
spectrum is experimentally measurable.
As already seen for the HHG spectra, the grid and B-spline

basis sets describe with the same accuracy both bound−bound
and bound−continuum transitions. Their ATI spectra coincide
and correctly reproduce the expected features of an ATI
spectrum: the distance between two consecutive ATI peaks (in
the positive energy region) is constant and equal to the energy
of a photon, i.e., 0.057 Ha.
The Gaussian basis is only able to reproduce bound−bound

transitions. The negative energy part of the spectrum is quite
close to the one obtained with the grid and B-splines, while
bound-continuum transitions are out of reach for the Gaussian
basis set. This limitation is due to the low density of states in
the continuum. Indeed, with the basis-set parameters used
here, only six continuum states are reproduced in the energy
region between 0 and 1 Ha, as we can see in the bottom panel
of Figure 2. This low density of states is far from reproducing
the correct ATI energy distribution and explains why no more
than six peaks are observed in the positive energy region of the

spectrum. The energies of the six ATI peaks correspond to the
energies of the six continuum states reported in Figure 2. To
detail more on this feature, we plot in panel (b) of Figure 10
the photoelectron spectrum, computed with the Gaussian
basis, after absorption of one photon and for three different
photon energies ω0 = 1.34 Ha, ω0 = 1.47 Ha, and ω0 = 1.61
Ha. Together, we also plot the energy position of the ground
state and of the first continuum energies corresponding to
symmetry-allowed transitions. One clearly sees that if the
photon energy matches the energy of a transition from the
ground state to one of the continuum states, then we get a
photoelectron peak. However, if the photon energy does not
match any transition then no ionization is observed. This
crucial feature forbids the computation of a correct photo-
electron or ATI spectrum with the Gaussian basis set used
here. We believe that larger Gaussian basis sets can in principle
describe ATI. Indeed, in 3D calculations,12 one can easily
produce tens of low-energy (<1 Ha) continuum states, leading
to a possible improvement of the ATI spectrum.

Figure 9. HHG spectra from the dipole at the equilibrium
internuclear distance R = 2.0 au with I = 5 × 1013 W/cm2 obtained
with the grid and with the Gaussian basis sets with linear-dependency
thresholds ε = 10−4, ε = 10−8, and ε = 10−10.

Figure 10. (a) ATI spectrum calculated at the equilibrium
interatomic distance R = 2.0 au with intensity I = 1 × 1014 W/cm2.
(b) Photoelectron spectrum calculated with the Gaussian basis at the
equilibrium distance R = 2.0 au with intensity I = 1 × 1014 W/cm2 and
three photon energies ω0 = 1.34 Ha (black), ω0 = 1.47 Ha (red), and
ω0 = 1.61 Ha (blue). The ground-state energy (−1.11 Ha) and the
continuum-state energies (0.06 Ha, 0.22 Ha, and 0.50 Ha) which
correspond to transitions allowed by symmetry are displayed (green
dots).
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4. 3D THEORETICAL MODEL OF H2
+

The electronic TDSE for a 3D model of H2
+ is given by, in

atomic units (au),

ψ ψ∂
∂

= [ ̂ + ̂ ]i
t

t H H t tr r r r( , ) ( ) ( , ) ( , )0 int (12)

where ψ(r, t) is the time-dependent electron wave function.
Here, Ĥ0(r) is the field-free Hamiltonian,

̂ = − ∇ + ̂H Vr r( )
1
2

( )0
2

(13)

with V̂(r) the Coulomb electron−nuclei interaction.
The interaction between the electron and the laser electric

field E(t) is taken into account by the time-dependent
interaction potential, which is given in the length gauge by

̂ = ̂H t zE tr( , ) ( )int (14)

where E(t) is the laser electric field polarized along the z axis,
corresponding to the H2

+ internuclear axis, and z ̂ is the
electron position operator along this axis. We have chosen the
same type of laser as in the 1D model (see Section 2) except
that the duration of the pulse is τ = 6T0 (i.e., 6 optical cycles).
We calculated HHG spectra from the dipole as in eq 7.
4.1. Representation of the Time-Dependent Wave

Function and Propagation. 4.1.1. Real-Space Grid.
Concerning the 3D calculations on a grid, we used the
Octopus code which is a software package for TDDFT
calculations.26 For our calculations we have chosen the
“independent particle” option which allows getting the
numerically exact solution for the TDSE in the case of one
electron. We have chosen as the simulation box a cylinder with
radius 50 au and height 100 au with a grid space Δr = 0.435 au.
The TDSE of eq 12 is solved by means of the Crank−
Nicholson propagation algorithm57,58 with a time step Δt = 5
× 10−2 au. Also in this case to avoid unphysical reflections at
the boundaries of the simulation box, a mask-type absorber
function was used with a spatial extension of 22 au.
4.1.2. Gaussian Basis Set. In this case, we used the

approach we developed and detailed in refs 12 and 40 which
consists of solving the TDSE using the TDCI approach. For
the Gaussian calculations, we used a development version of
the MOLPRO software package77 and the external code
LIGHT40 to perform the time propagation using also in this
case a time step Δt = 5 × 10−2 au. As Gaussian basis set we
used a 6-aug-cc-pVTZ with 5 K functions, which we denote as
6-aug-cc-pVTZ+5K, which is the largest basis without linear
dependencies. The basis-set exponents and contraction
coefficients are collected in Table S2 of Supporting
Information. To treat ionization we used a double-d heuristic
model where the parameters d1 and d0 have been chosen as in
the 1D model. The value of Ip is in this case −1.10 Ha.

5. 3D RESULTS AND DISCUSSION
5.1. HHG. We calculated HHG spectra in the dipole form

for H2
+ at internuclear distance R = 2.0 au (equilibrium) for a

Ti:sapphire laser with a carrier frequency ω0 = 0.057 Ha and
intensities I = 5 × 1013, 1 × 1014, 2 × 1014, 3 × 1014, 4 × 1014,
and 5 × 1014 W/cm2.
In Figure 11 we show the HHG spectra for three laser

intensities (the spectra for the other intensities are reported in
the Supporting Information). Both the Gaussian and grid basis
sets reproduce well the expected features of an HHG spectrum,

regardless of the applied field intensity, as already pointed out
for the 1D case. However, starting from intensity I = 3 × 1014

W/cm2, the quality of the spectrum obtained with the
Gaussian basis set tends to diminish, especially in the cutoff
region. For 3D calculations, obtaining a good HHG spectrum
with optimized Gaussians seems to be more difficult than for
1D calculations, due to the computational complexity.
However, it is interesting to note that the low-energy

harmonics are still well described when compared to the grid

Figure 11. HHG spectra in the dipole form at the equilibrium
internuclear distance R = 2.0 au with laser intensities (a) I = 5 × 1013

W/cm2, (b) I = 2 × 1014 W/cm2, and (c) I = 3 × 1014 W/cm2. For
each HHG spectrum, the dot-dashed line gives the cutoff energy Ecutoff
= Ip + 3.17Up given by the rescattering model60,61 which is (a) Ecutoff =
25.4ω0, (b) Ecutoff = 43.7ω0, and (c) Ecutoff = 55.9ω0. The arrow points
to the expected position of the two-center interference minimum
extracted from the recombination dipole.
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calculations. We show this behavior by analyzing the fine
structures of the peaks as shown in Figure 12. Here, we plot

the HHG spectra up to the 13th harmonic for different
intensities. For the grid calculations (panel (a)) with I = 5 ×
1013 W/cm2 only the first and the third harmonic peaks are
clearly visible together with a strong and large peak at around
7.65ω0, due to the emission from the first excited state. Also in
this case we observe hyper-Raman lines at position ω̃ ± 2kω0
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where k is an integer and ω̃ = 7.65ω0 is the resonance with the
first excited state. Observing the evolution of the harmonics
and the resonant peaks as a function of the laser intensity
(from I = 5 × 1013 W/cm2 to I = 5 × 1014 W/cm2), the
harmonics become more and more intense while the hyper-
Raman lines almost disappear. The same behavior was already
observed in the 1D model. The spectra obtained with the
Gaussian basis set show exactly the same trend as shown in
panel (b) of Figure 12.

6. CONCLUSIONS
We explicitly solved the 1D and 3D TDSE for H2

+ in the
presence of an intense electric field, and we explored the
numerical performance of using a real-space grid, a B-spline
basis, or a Gaussian basis optimized for the continuum. We

analyzed the performance of the three basis sets for calculating
HHG and ATI spectra. In particular, for HHG, the capability
of the basis set to reproduce the two-center interference and
the hyper-Raman lines was investigated. We showed that the
grid and B-spline representations of the time-dependent wave
function give the same results for both HHG and ATI. On the
contrary, the performance of the Gaussian basis is more mixed
and depends on the intensity of the laser. It is possible to
optimize Gaussian functions to describe the low-energy part of
the continuum. However, this optimization is limited by the
issue of linear dependencies among Gaussian functions. This
implies that for HHG the Gaussian basis can perform well up
to the laser intensity I = 5 × 1014 W/cm2 for 1D and up to I =
2 × 1014 W/cm2 for 3D. For higher intensities we have found
that only low-energy harmonics are still correct. Moreover, for
3D calculations, obtaining a good HHG spectrum with
optimized Gaussian functions seems to be more difficult than
in 1D calculations. Despite their limitations, Gaussian basis
sets can reproduce intricate features of the HHG spectrum at
low energy. Instead, in the case of ATI, Gaussian basis sets
make impossible the description of a correct spectrum.
In conclusion, from our investigation we noticed that the

grid and B-spline basis sets have very similar behavior and
computational cost. These basis sets are very accurate to
describe the continuum and phenomena such as HHG and
ATI. Gaussian basis sets are less efficient to describe the
continuum. The effect on ATI and HHG spectra is however
different: on one hand, ATI spectrum is not reproduced by
Gaussian basis functions, but on the other hand the most
important features and fine structures (minimum/resonances)
at low energy of the HHG spectrum are correctly described. A
clear advantage of Gaussian functions with respect the other
basis sets is their computational cost which continues to make
them interesting for many-electron systems.
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(18) Wassaf, J.; Veńiard, V.; Taïeb, R.; Maquet, A. Strong Field
Atomic Ionization: Origin of High-Energy Structures in Photo-
electron Spectra. Phys. Rev. Lett. 2003, 90, 013003.
(19) Ruiz, C.; Plaja, L.; Taieb, R.; Veńiard, V.; Maquet, A. Quantum
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(49) Picoń, A.; Bahabad, A.; Kapteyn, H. C.; Murnane, M. M.;
Becker, A. Two-center interferences in photoionization of a
dissociating H2

+ molecule. Phys. Rev. A: At., Mol., Opt. Phys. 2011,
83, 013414.
(50) Lein, M.; Hay, N.; Velotta, R.; Marangos, J. P.; Knight, P. L.
Interference effects in high-order harmonic generation with
molecules. Phys. Rev. A: At., Mol., Opt. Phys. 2002, 66, 023805.
(51) Millack, T.; Maquet, A. Hyper-Raman Lines Produced During
High Harmonic Generation. J. Mod. Opt. 1993, 40, 2161−2171.
(52) Burnett, K.; Reed, V. C.; Cooper, J.; Knight, P. L. Calculation of
the background emitted during high-harmonic generation. Phys. Rev.
A: At., Mol., Opt. Phys. 1992, 45, 3347.
(53) Bandrauk, A. D.; Chelkowski, S.; Diestler, D. J.; Manz, J.; Yuan,
K. J. Quantum simulation of high-order harmonic spectra of the
hydrogen atom. Phys. Rev. A: At., Mol., Opt. Phys. 2009, 79, 023403.
(54) Han, Y.-C.; Madsen, L. B. Comparison between length and
velocity gauges in quantum simulations high-order harmonic
generation. Phys. Rev. A: At., Mol., Opt. Phys. 2010, 81, 063430.
(55) Schafer, K. The energy analysis of time-dependent numerical
wave functions. Comput. Phys. Commun. 1991, 63, 427−434.
(56) For the grid and B-spline basis sets, the ATI signal was evaluated
following the approach explicitly given in ref 55. We compute

γ ψ τ γ γ ψ τ γ χ χ= = ⟨ | [ ̂ − + ]| ⟩ = ⟨ | ⟩P E n H E( , 2, ) ( ) / ( ) ( )4
0

4 4 4 , where |χ⟩ is

defined in eq 2 of ref 55 γ γ χ ψ τ̂ − + ̂ − − | ⟩ = | ⟩H E i H E i( )( ) ( )0 0 . Then
P(E, n = 2, γ) = γ4⟨χ|χ⟩ is directly obtained from the norm of |χ⟩. For the
Gaussian basis sets, the wave function is expressed in a orbital basis for which
the window operator of eq 8 is diagonal. We thus simply evaluate

γ γ γ= = ∑ | [ − + ]P E n c E E( , 2, ) / ( )j j j
2 4 4 4 , where j runs over the (discrete)

states from the quantum chemistry calculation.

(57) Crank, J.; Nicolson, P.; Hartree, D. R. A practical method for
numerical evaluation of solutions of partial differential equations of
the heat-conduction type. Math. Proc. Cambridge Philos. Soc. 1947, 43,
50.
(58) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge
University Press: New York, NY, U.S.A., 2007.
(59) Kaufmann, K.; Baumeister, W.; Jungen, M. Universal Gaussian
basis sets for an optimum representation Rydberg and continuum
wavefunctions. J. Phys. B: At., Mol. Opt. Phys. 1989, 22, 2223−2240.
(60) Corkum, P. B. Plasma perspective on strong field multiphoton
ionization. Phys. Rev. Lett. 1993, 71, 1994.
(61) Lewenstein, M.; Balcou, P.; Ivanov, M. Y.; L’Huillier, A.;
Corkum, P. B. Theory of high-harmonic generation by low-frequency
laser fields. Phys. Rev. A: At., Mol., Opt. Phys. 1994, 49, 2117.
(62) Seaton, M. J.; Peach, G. The Determination of Phases of Wave
Functions. Proc. Phys. Soc., London 1962, 79, 1296.
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